Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Hazard Mater ; 421: 126679, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1313241

ABSTRACT

Intensive disinfection of wastewater during the COVID-19 pandemic might elevate the generation of toxic disinfection byproducts (DBPs), which has triggered global concerns about their ecological risks to natural aquatic ecosystems. In this study, the toxicity of 17 DBPs typically present in wastewater effluents on three representative microalgae, including Scenedesmus sp. (Chlorophyta), Microcystis aeruginosa (Cyanophyta), and Cyclotella sp. (Bacillariophyta) was investigated. The sensitivities of the three microalgae to DBPs varied greatly from species to species, indicating that DBPs may change the structure of phytoplankton communities. Later, co-cultures of these phytoplankton groups as a proxy of ecological freshwater scenario were conducted to explore the impacts of DBPs on phytoplankton community succession. M. aeruginosa became surprisingly dominant in co-cultures, representing over 50% after dosing with monochloroacetic acid (MCAA, 0.1-10 mg/L). The highest proportion of M. aeruginosa was 70.3% when exposed to 2 mg/L MCAA. Although Scenedesmus sp. dominated in monochloroacetonitrile (MCAN) exposure, M. aeruginosa accounted for no less than 30% even at 40 mg/L MCAN. In this study, DBPs disrupted the original inter-algal relationship in favor of M. aeruginosa, suggesting that DBPs may contribute to the outbreak of cyanobacterial blooms in aquatic ecosystems.


Subject(s)
Disinfectants/toxicity , Phytoplankton/drug effects , Scenedesmus , Coculture Techniques , Disinfection , Ecosystem , Fresh Water , Scenedesmus/drug effects
2.
Environ Sci Technol ; 55(15): 10534-10541, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1270648

ABSTRACT

Intensified disinfection of wastewater during the COVID-19 pandemic increased the release of toxic disinfection by-products (DBPs). However, studies relating to the ecological impacts of DBPs on the aquatic environment remain insufficient. In this study, we comparatively investigated the toxicities and ecological risks of 17 typical, halogenated DBPs to three trophic levels of organisms in the freshwater ecosystem, including phytoplankton (Scenedesmus sp.), zooplankton (Daphnia magna), and fish (Danio rerio). Toxicity of DBPs was found to be species-specific: Scenedesmus sp. was the most sensitive to haloacetic acids, while D. magna was the most sensitive to haloacetonitriles and trihalomethanes. Specific to each DBP, toxicities were also related to their classes and substituted halogen atoms. Damage to photosystems and oxidative stress served as the potential mechanisms for DBPs toxicity to microalgae. The different sensitivities to DBPs indicate that a battery of bioassays with organisms at different trophic levels is necessary to determine the ecotoxicity of DBPs. Furthermore, the ecological risks of DBPs were assessed by calculating the risk quotients (RQs) based on toxicity data from multiple bioassays. The cumulative RQs of DBPs to all the organisms were greater than 1.0, indicating high ecological risks of DBPs in wastewater effluents.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Animals , Aquatic Organisms , Disinfectants/toxicity , Disinfection , Ecosystem , Halogenation , Humans , Pandemics , SARS-CoV-2 , Trihalomethanes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL